Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distilling Large Language Models for Text-Attributed Graph Learning (2402.12022v2)

Published 19 Feb 2024 in cs.CL and cs.LG

Abstract: Text-Attributed Graphs (TAGs) are graphs of connected textual documents. Graph models can efficiently learn TAGs, but their training heavily relies on human-annotated labels, which are scarce or even unavailable in many applications. LLMs have recently demonstrated remarkable capabilities in few-shot and zero-shot TAG learning, but they suffer from scalability, cost, and privacy issues. Therefore, in this work, we focus on synergizing LLMs and graph models with their complementary strengths by distilling the power of LLMs to a local graph model on TAG learning. To address the inherent gaps between LLMs (generative models for texts) and graph models (discriminative models for graphs), we propose first to let LLMs teach an interpreter with rich textual rationale and then let a student model mimic the interpreter's reasoning without LLMs' textual rationale. Extensive experiments validate the efficacy of our proposed framework.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: