Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient End-to-end Language Model Fine-tuning on Graphs (2312.04737v2)

Published 7 Dec 2023 in cs.LG, cs.AI, and cs.CL

Abstract: Learning from Text-Attributed Graphs (TAGs) has attracted significant attention due to its wide range of real-world applications. The rapid evolution of LMs has revolutionized the way we process textual data, which indicates a strong potential to replace shallow text embedding generally used in Graph Neural Networks (GNNs). However, we find that existing LM approaches that exploit text information in graphs suffer from inferior computation and data efficiency. In this study, we introduce LEADING, a novel and efficient approach for end-to-end fine-tuning of LLMs on TAGs. To enhance data efficiency, LEADING efficiently transfers rich knowledge from LMs to downstream graph learning tasks with limited labeled data by employing end-to-end training of LMs and GNNs in a semi-supervised learning setting. To address associated computation efficiency issues, it introduces two techniques: neighbor decoupling targeting LMs and implicit graph modeling targeting GNNs, respectively. Our proposed approach demonstrates superior performance, achieving state-of-the-art (SOTA) results on the ogbn-arxiv leaderboard, while maintaining computation cost and memory overhead comparable to graph-less fine-tuning of LMs. Through comprehensive experiments, we showcase its superior computation and data efficiency, presenting a promising solution for various LMs and graph learning tasks on TAGs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.