Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A precise bare simulation approach to the minimization of some distances. II. Further Foundations (2402.08478v1)

Published 13 Feb 2024 in cs.IT and math.IT

Abstract: The constrained minimization (respectively maximization) of directed distances and of related generalized entropies is a fundamental task in information theory as well as in the adjacent fields of statistics, machine learning, artificial intelligence, signal processing and pattern recognition. In our previous paper "A precise bare simulation approach to the minimization of some distances. I. Foundations", we obtained such kind of constrained optima by a new dimension-free precise bare (pure) simulation method, provided basically that (i) the underlying directed distance is of f-divergence type, and that (ii) this can be connected to a light-tailed probability distribution in a certain manner. In the present paper, we extend this approach such that constrained optimization problems of a very huge amount of directed distances and generalized entropies -- and beyond -- can be tackled by a newly developed dimension-free extended bare simulation method, for obtaining both optima as well as optimizers. Almost no assumptions (like convexity) on the set of constraints are needed, within our discrete setup of arbitrary dimension, and our method is precise (i.e., converges in the limit). For instance, we cover constrained optimizations of arbitrary f-divergences, Bregman distances, scaled Bregman distances and weighted Euclidean distances. The potential for wide-spread applicability is indicated, too; in particular, we deliver many recent references for uses of the involved distances/divergences in various different research fields (which may also serve as an interdisciplinary interface).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.