A Unifying Framework for Some Directed Distances in Statistics (2203.00863v1)
Abstract: Density-based directed distances -- particularly known as divergences -- between probability distributions are widely used in statistics as well as in the adjacent research fields of information theory, artificial intelligence and machine learning. Prominent examples are the Kullback-Leibler information distance (relative entropy) which e.g. is closely connected to the omnipresent maximum likelihood estimation method, and Pearson's chisquare-distance which e.g. is used for the celebrated chisquare goodness-of-fit test. Another line of statistical inference is built upon distribution-function-based divergences such as e.g. the prominent (weighted versions of) Cramer-von Mises test statistics respectively Anderson-Darling test statistics which are frequently applied for goodness-of-fit investigations; some more recent methods deal with (other kinds of) cumulative paired divergences and closely related concepts. In this paper, we provide a general framework which covers in particular both the above-mentioned density-based and distribution-function-based divergence approaches; the dissimilarity of quantiles respectively of other statistical functionals will be included as well. From this framework, we structurally extract numerous classical and also state-of-the-art (including new) procedures. Furthermore, we deduce new concepts of dependence between random variables, as alternatives to the celebrated mutual information. Some variational representations are discussed, too.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.