Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Unifying Framework for Some Directed Distances in Statistics (2203.00863v1)

Published 2 Mar 2022 in math.ST, cs.IT, math.IT, math.PR, stat.ML, and stat.TH

Abstract: Density-based directed distances -- particularly known as divergences -- between probability distributions are widely used in statistics as well as in the adjacent research fields of information theory, artificial intelligence and machine learning. Prominent examples are the Kullback-Leibler information distance (relative entropy) which e.g. is closely connected to the omnipresent maximum likelihood estimation method, and Pearson's chisquare-distance which e.g. is used for the celebrated chisquare goodness-of-fit test. Another line of statistical inference is built upon distribution-function-based divergences such as e.g. the prominent (weighted versions of) Cramer-von Mises test statistics respectively Anderson-Darling test statistics which are frequently applied for goodness-of-fit investigations; some more recent methods deal with (other kinds of) cumulative paired divergences and closely related concepts. In this paper, we provide a general framework which covers in particular both the above-mentioned density-based and distribution-function-based divergence approaches; the dissimilarity of quantiles respectively of other statistical functionals will be included as well. From this framework, we structurally extract numerous classical and also state-of-the-art (including new) procedures. Furthermore, we deduce new concepts of dependence between random variables, as alternatives to the celebrated mutual information. Some variational representations are discussed, too.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.