Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Tuning and Inference for Large Language Models on Textual Graphs (2401.15569v2)

Published 28 Jan 2024 in cs.CL

Abstract: Rich textual and topological information of textual graphs need to be modeled in real-world applications such as webpages, e-commerce, and academic articles. Practitioners have been long following the path of adopting a shallow text encoder and a subsequent graph neural network (GNN) to solve this problem. In light of recent advancements in LLMs, it is apparent that integrating LLMs for enhanced textual encoding can substantially improve the performance of textual graphs. Nevertheless, the efficiency of these methods poses a significant challenge. In this paper, we propose ENGINE, a parameter- and memory-efficient fine-tuning method for textual graphs with an LLM encoder. The key insight is to combine the LLMs and GNNs through a tunable side structure, which significantly reduces the training complexity without impairing the joint model's capacity. Extensive experiments on textual graphs demonstrate our method's effectiveness by achieving the best model performance, meanwhile having the lowest training cost compared to previous methods. Moreover, we introduce two variants with caching and dynamic early exit to further enhance training and inference speed. Specifically, caching accelerates ENGINE's training by 12x, and dynamic early exit achieves up to 5x faster inference with a negligible performance drop (at maximum 1.17% relevant drop across 7 datasets). Our codes are available at: https://github.com/ZhuYun97/ENGINE

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.