Bayesian Analysis of Combinatorial Gaussian Process Bandits (2312.12676v3)
Abstract: We consider the combinatorial volatile Gaussian process (GP) semi-bandit problem. Each round, an agent is provided a set of available base arms and must select a subset of them to maximize the long-term cumulative reward. We study the Bayesian setting and provide novel Bayesian cumulative regret bounds for three GP-based algorithms: GP-UCB, GP-BayesUCB and GP-TS. Our bounds extend previous results for GP-UCB and GP-TS to the infinite, volatile and combinatorial setting, and to the best of our knowledge, we provide the first regret bound for GP-BayesUCB. Volatile arms encompass other widely considered bandit problems such as contextual bandits. Furthermore, we employ our framework to address the challenging real-world problem of online energy-efficient navigation, where we demonstrate its effectiveness compared to the alternatives.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.