Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

No-Regret Algorithms for Time-Varying Bayesian Optimization (2102.06296v2)

Published 11 Feb 2021 in cs.LG

Abstract: In this paper, we consider the time-varying Bayesian optimization problem. The unknown function at each time is assumed to lie in an RKHS (reproducing kernel Hilbert space) with a bounded norm. We adopt the general variation budget model to capture the time-varying environment, and the variation is characterized by the change of the RKHS norm. We adapt the restart and sliding window mechanism to introduce two GP-UCB type algorithms: R-GP-UCB and SW-GP-UCB, respectively. We derive the first (frequentist) regret guarantee on the dynamic regret for both algorithms. Our results not only recover previous linear bandit results when a linear kernel is used, but complement the previous regret analysis of time-varying Gaussian process bandit under a Bayesian-type regularity assumption, i.e., each function is a sample from a Gaussian process.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.