Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Scene 3-D Reconstruction System in Scattering Medium (2312.09005v1)

Published 14 Dec 2023 in cs.CV

Abstract: The research on neural radiance fields for new view synthesis has experienced explosive growth with the development of new models and extensions. The NERF algorithm, suitable for underwater scenes or scattering media, is also evolving. Existing underwater 3D reconstruction systems still face challenges such as extensive training time and low rendering efficiency. This paper proposes an improved underwater 3D reconstruction system to address these issues and achieve rapid, high-quality 3D reconstruction.To begin with, we enhance underwater videos captured by a monocular camera to correct the poor image quality caused by the physical properties of the water medium while ensuring consistency in enhancement across adjacent frames. Subsequently, we perform keyframe selection on the video frames to optimize resource utilization and eliminate the impact of dynamic objects on the reconstruction results. The selected keyframes, after pose estimation using COLMAP, undergo a three-dimensional reconstruction improvement process using neural radiance fields based on multi-resolution hash coding for model construction and rendering.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.