Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

WaterNeRF: Neural Radiance Fields for Underwater Scenes (2209.13091v2)

Published 27 Sep 2022 in cs.RO, cs.CV, and eess.IV

Abstract: Underwater imaging is a critical task performed by marine robots for a wide range of applications including aquaculture, marine infrastructure inspection, and environmental monitoring. However, water column effects, such as attenuation and backscattering, drastically change the color and quality of imagery captured underwater. Due to varying water conditions and range-dependency of these effects, restoring underwater imagery is a challenging problem. This impacts downstream perception tasks including depth estimation and 3D reconstruction. In this paper, we advance state-of-the-art in neural radiance fields (NeRFs) to enable physics-informed dense depth estimation and color correction. Our proposed method, WaterNeRF, estimates parameters of a physics-based model for underwater image formation, leading to a hybrid data-driven and model-based solution. After determining the scene structure and radiance field, we can produce novel views of degraded as well as corrected underwater images, along with dense depth of the scene. We evaluate the proposed method qualitatively and quantitatively on a real underwater dataset.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. M. Johnson-Roberson, M. Bryson, A. Friedman, O. Pizarro, G. Troni, P. Ozog, and J. C. Henderson, “High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology,” Journal of Field Robotics, vol. 34, no. 4, pp. 625–643, 2017.
  2. M. Saberioon, A. Gholizadeh, P. Cisar, A. Pautsina, and J. Urban, “Application of machine vision systems in aquaculture with emphasis on fish: state-of-the-art and key issues,” Reviews in Aquaculture, vol. 9, no. 4, pp. 369–387, 2017.
  3. D. Berman, T. Treibitz, and S. Avidan, “Non-local image dehazing,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1674–1682, 2016.
  4. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as neural radiance fields for view synthesis,” in European conference on computer vision, pp. 405–421, Springer, 2020.
  5. S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman, and K. Zuiderveld, “Adaptive histogram equalization and its variations,” Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355–368, 1987.
  6. G. Buchsbaum, “A spatial processor model for object colour perception,” Journal of the Franklin institute, vol. 310, no. 1, pp. 1–26, 1980.
  7. N. Carlevaris-Bianco, A. Mohan, and R. M. Eustice, “Initial results in underwater single image dehazing,” in Oceans 2010 Mts/IEEE Seattle, pp. 1–8, IEEE, 2010.
  8. D. Berman, D. Levy, S. Avidan, and T. Treibitz, “Underwater single image color restoration using haze-lines and a new quantitative dataset,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 8, pp. 2822–2837, 2021.
  9. Y. Schechner and N. Karpel, “Recovery of underwater visibility and structure by polarization analysis,” IEEE Journal of Oceanic Engineering, vol. 30, no. 3, pp. 570–587, 2005.
  10. D. Akkaynak and T. Treibitz, “A revised underwater image formation model,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6723–6732, 2018.
  11. D. Akkaynak, T. Treibitz, T. Shlesinger, Y. Loya, R. Tamir, and D. Iluz, “What is the space of attenuation coefficients in underwater computer vision?,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 568–577, 2017.
  12. D. Akkaynak and T. Treibitz, “Sea-thru: A method for removing water from underwater images,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1682–1691, 2019.
  13. T. Ye, S. Chen, Y. Liu, Y. Ye, E. Chen, and Y. Li, “Underwater light field retention: Neural rendering for underwater imaging,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 488–497, 2022.
  14. C. Fabbri, M. J. Islam, and J. Sattar, “Enhancing underwater imagery using generative adversarial networks,” 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7159–7165, 2018.
  15. J. Li, K. A. Skinner, R. M. Eustice, and M. Johnson-Roberson, “Watergan: Unsupervised generative network to enable real-time color correction of monocular underwater images,” IEEE Robotics and Automation letters, vol. 3, no. 1, pp. 387–394, 2017.
  16. S. Bi, Z. Xu, P. Srinivasan, B. Mildenhall, K. Sunkavalli, M. Hašan, Y. Hold-Geoffroy, D. Kriegman, and R. Ramamoorthi, “Neural reflectance fields for appearance acquisition,” arXiv preprint arXiv:2008.03824, 2020.
  17. P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T. Barron, “Nerv: Neural reflectance and visibility fields for relighting and view synthesis,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7495–7504, 2021.
  18. D. Derksen and D. Izzo, “Shadow neural radiance fields for multi-view satellite photogrammetry,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1152–1161, 2021.
  19. Z. Wang, W. Yang, J. Cao, L. Xu, J. ming Yu, and J. Yu, “Neref: Neural refractive field for fluid surface reconstruction and implicit representation,” ArXiv, vol. abs/2203.04130, 2022.
  20. A. Fisher, R. Cannizzaro, M. Cochrane, C. Nagahawatte, and J. L. Palmer, “Colmap: A memory-efficient occupancy grid mapping framework,” Robotics and Autonomous Systems, vol. 142, p. 103755, 2021.
  21. J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan, “Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields,” ICCV, 2021.
  22. G. Luise, A. Rudi, M. Pontil, and C. Ciliberto, “Differential properties of sinkhorn approximation for learning with wasserstein distance,” in Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, (Red Hook, NY, USA), p. 5864–5874, Curran Associates Inc., 2018.
  23. R. Sinkhorn, “Diagonal equivalence to matrices with prescribed row and column sums,” The American Mathematical Monthly, vol. 74, no. 4, pp. 402–405, 1967.
  24. M. Cuturi, “Sinkhorn distances: Lightspeed computation of optimal transport,” Advances in neural information processing systems, vol. 26, 2013.
  25. J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable transformations of Python+NumPy programs,” 2018.
  26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.
  27. K. A. Skinner, E. I. Ruland, and M. Johnson-Roberson, “Automatic color correction for 3d reconstruction of underwater scenes,” in IEEE International Conference on Robotics and Automation, 2017.
  28. S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera,” in UIST ’11 Proceedings of the 24th annual ACM symposium on User interface software and technology, pp. 559–568, ACM, October 2011.
  29. M. J. Islam, Y. Xia, and J. Sattar, “Fast underwater image enhancement for improved visual perception,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 3227–3234, 2020.
  30. N. G. Jerlov, Marine optics / by N.G. Jerlov. Elsevier Scientific Pub. Co Amsterdam ; New York, 1976.
  31. K. Panetta, C. Gao, and S. Agaian, “Human-visual-system-inspired underwater image quality measures,” IEEE Journal of Oceanic Engineering, vol. 41, no. 3, pp. 541–551, 2016.
  32. H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Computer Vision – ECCV 2006 (A. Leonardis, H. Bischof, and A. Pinz, eds.), (Berlin, Heidelberg), pp. 404–417, Springer Berlin Heidelberg, 2006.
  33. D. Girardeau-Montaut, “Cloud compare—3d point cloud and mesh processing software,” Open Source Project, 2015.
Citations (22)

Summary

We haven't generated a summary for this paper yet.