Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Extracting periodontitis diagnosis in clinical notes with RoBERTa and regular expression (2311.10809v1)

Published 17 Nov 2023 in cs.AI

Abstract: This study aimed to utilize text processing and NLP models to mine clinical notes for the diagnosis of periodontitis and to evaluate the performance of a named entity recognition (NER) model on different regular expression (RE) methods. Two complexity levels of RE methods were used to extract and generate the training data. The SpaCy package and RoBERTa transformer models were used to build the NER model and evaluate its performance with the manual-labeled gold standards. The comparison of the RE methods with the gold standard showed that as the complexity increased in the RE algorithms, the F1 score increased from 0.3-0.4 to around 0.9. The NER models demonstrated excellent predictions, with the simple RE method showing 0.84-0.92 in the evaluation metrics, and the advanced and combined RE method demonstrating 0.95-0.99 in the evaluation. This study provided an example of the benefit of combining NER methods and NLP models in extracting target information from free-text to structured data and fulfilling the need for missing diagnoses from unstructured notes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.