Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Healthcare NER Models Using Language Model Pretraining (1910.11241v2)

Published 23 Oct 2019 in cs.CL, cs.IR, and cs.LG

Abstract: In this paper, we present our approach to extracting structured information from unstructured Electronic Health Records (EHR) [2] which can be used to, for example, study adverse drug reactions in patients due to chemicals in their products. Our solution uses a combination of NLP techniques and a web-based annotation tool to optimize the performance of a custom Named Entity Recognition (NER) [1] model trained on a limited amount of EHR training data. This work was presented at the first Health Search and Data Mining Workshop (HSDM 2020) [26]. We showcase a combination of tools and techniques leveraging the recent advancements in NLP aimed at targeting domain shifts by applying transfer learning and LLM pre-training techniques [3]. We present a comparison of our technique to the current popular approaches and show the effective increase in performance of the NER model and the reduction in time to annotate data.A key observation of the results presented is that the F1 score of model (0.734) trained with our approach with just 50% of available training data outperforms the F1 score of the blank spaCy model without LLM component (0.704) trained with 100% of the available training data. We also demonstrate an annotation tool to minimize domain expert time and the manual effort required to generate such a training dataset. Further, we plan to release the annotated dataset as well as the pre-trained model to the community to further research in medical health records.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.