Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A framework to generate sparsity-inducing regularizers for enhanced low-rank matrix completion (2310.04954v1)

Published 8 Oct 2023 in math.OC, cs.IR, cs.LG, eess.AS, and eess.IV

Abstract: Applying half-quadratic optimization to loss functions can yield the corresponding regularizers, while these regularizers are usually not sparsity-inducing regularizers (SIRs). To solve this problem, we devise a framework to generate an SIR with closed-form proximity operator. Besides, we specify our framework using several commonly-used loss functions, and produce the corresponding SIRs, which are then adopted as nonconvex rank surrogates for low-rank matrix completion. Furthermore, algorithms based on the alternating direction method of multipliers are developed. Extensive numerical results show the effectiveness of our methods in terms of recovery performance and runtime.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.