Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Provable Low Rank Plus Sparse Matrix Separation Via Nonconvex Regularizers (2109.12713v1)

Published 26 Sep 2021 in stat.ML, cs.LG, and math.OC

Abstract: This paper considers a large class of problems where we seek to recover a low rank matrix and/or sparse vector from some set of measurements. While methods based on convex relaxations suffer from a (possibly large) estimator bias, and other nonconvex methods require the rank or sparsity to be known a priori, we use nonconvex regularizers to minimize the rank and $l_0$ norm without the estimator bias from the convex relaxation. We present a novel analysis of the alternating proximal gradient descent algorithm applied to such problems, and bound the error between the iterates and the ground truth sparse and low rank matrices. The algorithm and error bound can be applied to sparse optimization, matrix completion, and robust principal component analysis as special cases of our results.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.