Emergent Mind

Abstract

A Hamiltonian path (a Hamiltonian cycle) in a graph is a path (a cycle, respectively) that traverses all of its vertices. The problems of deciding their existence in an input graph are well-known to be NP-complete, in fact, they belong to the first problems shown to be computationally hard when the theory of NP-completeness was being developed. A lot of research has been devoted to the complexity of Hamiltonian path and Hamiltonian cycle problems for special graph classes, yet only a handful of positive results are known. The complexities of both of these problems have been open even for $4K_1$-free graphs, i.e., graphs of independence number at most $3$. We answer this question in the general setting of graphs of bounded independence number. We also consider a newly introduced problem called \emph{Hamiltonian-$\ell$-Linkage} which is related to the notions of a path cover and of a linkage in a graph. This problem asks if given $\ell$ pairs of vertices in an input graph can be connected by disjoint paths that altogether traverse all vertices of the graph. For $\ell=1$, Hamiltonian-1-Linkage asks for existence of a Hamiltonian path connecting a given pair of vertices. Our main result reads that for every pair of integers $k$ and $\ell$, the Hamiltonian-$\ell$-Linkage problem is polynomial time solvable for graphs of independence number not exceeding $k$.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.