Papers
Topics
Authors
Recent
2000 character limit reached

Hamiltonicity in Convex Bipartite Graphs (1809.06113v1)

Published 17 Sep 2018 in cs.DM and math.CO

Abstract: For a connected graph, the Hamiltonian cycle (path) is a simple cycle (path) that spans all the vertices in the graph. It is known from \cite{muller,garey} that HAMILTONIAN CYCLE (PATH) are NP-complete in general graphs and chordal bipartite graphs. A convex bipartite graph $G$ with bipartition $(X,Y)$ and an ordering $X=(x_1,\ldots,x_n)$, is a bipartite graph such that for each $y \in Y$, the neighborhood of $y$ in $X$ appears consecutively. $G$ is said to have convexity with respect to $X$. Further, convex bipartite graphs are a subclass of chordal bipartite graphs. In this paper, we present a necessary and sufficient condition for the existence of a Hamiltonian cycle in convex bipartite graphs and further we obtain a linear-time algorithm for this graph class. We also show that Chvatal's necessary condition is sufficient for convex bipartite graphs. The closely related problem is HAMILTONIAN PATH whose complexity is open in convex bipartite graphs. We classify the class of convex bipartite graphs as {\em monotone} and {\em non-monotone} graphs. For monotone convex bipartite graphs, we present a linear-time algorithm to output a Hamiltonian path. We believe that these results can be used to obtain algorithms for Hamiltonian path problem in non-monotone convex bipartite graphs. It is important to highlight (a) in \cite{keil,esha}, it is incorrectly claimed that Hamiltonian path problem in convex bipartite graphs is polynomial-time solvable by referring to \cite{muller} which actually discusses Hamiltonian cycle (b) the algorithm appeared in \cite{esha} for the longest path problem (Hamiltonian path problem) in biconvex and convex bipartite graphs have an error and it does not compute an optimum solution always. We present an infinite set of counterexamples in support of our claim.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.