Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hamiltonicity in Convex Bipartite Graphs (1809.06113v1)

Published 17 Sep 2018 in cs.DM and math.CO

Abstract: For a connected graph, the Hamiltonian cycle (path) is a simple cycle (path) that spans all the vertices in the graph. It is known from \cite{muller,garey} that HAMILTONIAN CYCLE (PATH) are NP-complete in general graphs and chordal bipartite graphs. A convex bipartite graph $G$ with bipartition $(X,Y)$ and an ordering $X=(x_1,\ldots,x_n)$, is a bipartite graph such that for each $y \in Y$, the neighborhood of $y$ in $X$ appears consecutively. $G$ is said to have convexity with respect to $X$. Further, convex bipartite graphs are a subclass of chordal bipartite graphs. In this paper, we present a necessary and sufficient condition for the existence of a Hamiltonian cycle in convex bipartite graphs and further we obtain a linear-time algorithm for this graph class. We also show that Chvatal's necessary condition is sufficient for convex bipartite graphs. The closely related problem is HAMILTONIAN PATH whose complexity is open in convex bipartite graphs. We classify the class of convex bipartite graphs as {\em monotone} and {\em non-monotone} graphs. For monotone convex bipartite graphs, we present a linear-time algorithm to output a Hamiltonian path. We believe that these results can be used to obtain algorithms for Hamiltonian path problem in non-monotone convex bipartite graphs. It is important to highlight (a) in \cite{keil,esha}, it is incorrectly claimed that Hamiltonian path problem in convex bipartite graphs is polynomial-time solvable by referring to \cite{muller} which actually discusses Hamiltonian cycle (b) the algorithm appeared in \cite{esha} for the longest path problem (Hamiltonian path problem) in biconvex and convex bipartite graphs have an error and it does not compute an optimum solution always. We present an infinite set of counterexamples in support of our claim.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.