Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

MRHER: Model-based Relay Hindsight Experience Replay for Sequential Object Manipulation Tasks with Sparse Rewards (2306.16061v2)

Published 28 Jun 2023 in cs.RO and cs.AI

Abstract: Sparse rewards pose a significant challenge to achieving high sample efficiency in goal-conditioned reinforcement learning (RL). Specifically, in sequential manipulation tasks, the agent receives failure rewards until it successfully completes the entire manipulation task, which leads to low sample efficiency. To tackle this issue and improve sample efficiency, we propose a novel model-based RL framework called Model-based Relay Hindsight Experience Replay (MRHER). MRHER breaks down a continuous task into subtasks with increasing complexity and utilizes the previous subtask to guide the learning of the subsequent one. Instead of using Hindsight Experience Replay (HER) in every subtask, we design a new robust model-based relabeling method called Foresight relabeling (FR). FR predicts the future trajectory of the hindsight state and relabels the expected goal as a goal achieved on the virtual future trajectory. By incorporating FR, MRHER effectively captures more information from historical experiences, leading to improved sample efficiency, particularly in object-manipulation environments. Experimental results demonstrate that MRHER exhibits state-of-the-art sample efficiency in benchmark tasks, outperforming RHER by 13.79% and 14.29% in the FetchPush-v1 environment and FetchPickandPlace-v1 environment, respectively.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com