Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Relay Hindsight Experience Replay: Self-Guided Continual Reinforcement Learning for Sequential Object Manipulation Tasks with Sparse Rewards (2208.00843v2)

Published 1 Aug 2022 in cs.RO and cs.AI

Abstract: Exploration with sparse rewards remains a challenging research problem in reinforcement learning (RL). Especially for sequential object manipulation tasks, the RL agent always receives negative rewards until completing all sub-tasks, which results in low exploration efficiency. To solve these tasks efficiently, we propose a novel self-guided continual RL framework, RelayHER (RHER). RHER first decomposes a sequential task into new sub-tasks with increasing complexity and ensures that the simplest sub-task can be learned quickly by utilizing Hindsight Experience Replay (HER). Secondly, we design a multi-goal & multi-task network to learn these sub-tasks simultaneously. Finally, we propose a Self-Guided Exploration Strategy (SGES). With SGES, the learned sub-task policy will guide the agent to the states that are helpful to learn more complex sub-task with HER. By this self-guided exploration and relay policy learning, RHER can solve these sequential tasks efficiently stage by stage. The experimental results show that RHER significantly outperforms vanilla-HER in sample-efficiency on five singleobject and five complex multi-object manipulation tasks (e.g., Push, Insert, ObstaclePush, Stack, TStack, etc.). The proposed RHER has also been applied to learn a contact-rich push task on a physical robot from scratch, and the success rate reached 10/10 with only 250 episodes.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.