Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

DCN-T: Dual Context Network with Transformer for Hyperspectral Image Classification (2304.09915v1)

Published 19 Apr 2023 in cs.CV

Abstract: Hyperspectral image (HSI) classification is challenging due to spatial variability caused by complex imaging conditions. Prior methods suffer from limited representation ability, as they train specially designed networks from scratch on limited annotated data. We propose a tri-spectral image generation pipeline that transforms HSI into high-quality tri-spectral images, enabling the use of off-the-shelf ImageNet pretrained backbone networks for feature extraction. Motivated by the observation that there are many homogeneous areas with distinguished semantic and geometric properties in HSIs, which can be used to extract useful contexts, we propose an end-to-end segmentation network named DCN-T. It adopts transformers to effectively encode regional adaptation and global aggregation spatial contexts within and between the homogeneous areas discovered by similarity-based clustering. To fully exploit the rich spectrums of the HSI, we adopt an ensemble approach where all segmentation results of the tri-spectral images are integrated into the final prediction through a voting scheme. Extensive experiments on three public benchmarks show that our proposed method outperforms state-of-the-art methods for HSI classification.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube