Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hyperspectral Image Segmentation based on Graph Processing over Multilayer Networks (2111.15018v1)

Published 29 Nov 2021 in cs.CV and eess.SP

Abstract: Hyperspectral imaging is an important sensing technology with broad applications and impact in areas including environmental science, weather, and geo/space exploration. One important task of hyperspectral image (HSI) processing is the extraction of spectral-spatial features. Leveraging on the recent-developed graph signal processing over multilayer networks (M-GSP), this work proposes several approaches to HSI segmentation based on M-GSP feature extraction. To capture joint spectral-spatial information, we first customize a tensor-based multilayer network (MLN) model for HSI, and define a MLN singular space for feature extraction. We then develop an unsupervised HSI segmentation method by utilizing MLN spectral clustering. Regrouping HSI pixels via MLN-based clustering, we further propose a semi-supervised HSI classification based on multi-resolution fusions of superpixels. Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral-spatial information extraction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.