Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multi-task Transformer with Relation-attention and Type-attention for Named Entity Recognition (2303.10870v1)

Published 20 Mar 2023 in cs.CL

Abstract: Named entity recognition (NER) is an important research problem in natural language processing. There are three types of NER tasks, including flat, nested and discontinuous entity recognition. Most previous sequential labeling models are task-specific, while recent years have witnessed the rising of generative models due to the advantage of unifying all NER tasks into the seq2seq model framework. Although achieving promising performance, our pilot studies demonstrate that existing generative models are ineffective at detecting entity boundaries and estimating entity types. This paper proposes a multi-task Transformer, which incorporates an entity boundary detection task into the named entity recognition task. More concretely, we achieve entity boundary detection by classifying the relations between tokens within the sentence. To improve the accuracy of entity-type mapping during decoding, we adopt an external knowledge base to calculate the prior entity-type distributions and then incorporate the information into the model via the self and cross-attention mechanisms. We perform experiments on an extensive set of NER benchmarks, including two flat, three nested, and three discontinuous NER datasets. Experimental results show that our approach considerably improves the generative NER model's performance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.