Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Named Entity Recognition via Machine Reading Comprehension: A Multi-Task Learning Approach (2309.11027v1)

Published 20 Sep 2023 in cs.CL

Abstract: Named Entity Recognition (NER) aims to extract and classify entity mentions in the text into pre-defined types (e.g., organization or person name). Recently, many works have been proposed to shape the NER as a machine reading comprehension problem (also termed MRC-based NER), in which entity recognition is achieved by answering the formulated questions related to pre-defined entity types through MRC, based on the contexts. However, these works ignore the label dependencies among entity types, which are critical for precisely recognizing named entities. In this paper, we propose to incorporate the label dependencies among entity types into a multi-task learning framework for better MRC-based NER. We decompose MRC-based NER into multiple tasks and use a self-attention module to capture label dependencies. Comprehensive experiments on both nested NER and flat NER datasets are conducted to validate the effectiveness of the proposed Multi-NER. Experimental results show that Multi-NER can achieve better performance on all datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube