Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Semantic Segmentation via Pixel-to-Center Similarity Calculation (2301.04870v1)

Published 12 Jan 2023 in cs.CV

Abstract: Since the fully convolutional network has achieved great success in semantic segmentation, lots of works have been proposed focusing on extracting discriminative pixel feature representations. However, we observe that existing methods still suffer from two typical challenges, i.e. (i) large intra-class feature variation in different scenes, (ii) small inter-class feature distinction in the same scene. In this paper, we first rethink semantic segmentation from a perspective of similarity between pixels and class centers. Each weight vector of the segmentation head represents its corresponding semantic class in the whole dataset, which can be regarded as the embedding of the class center. Thus, the pixel-wise classification amounts to computing similarity in the final feature space between pixels and the class centers. Under this novel view, we propose a Class Center Similarity layer (CCS layer) to address the above-mentioned challenges by generating adaptive class centers conditioned on different scenes and supervising the similarities between class centers. It utilizes a Adaptive Class Center Module (ACCM) to generate class centers conditioned on each scene, which adapt the large intra-class variation between different scenes. Specially designed loss functions are introduced to control both inter-class and intra-class distances based on predicted center-to-center and pixel-to-center similarity, respectively. Finally, the CCS layer outputs the processed pixel-to-center similarity as the segmentation prediction. Extensive experiments demonstrate that our model performs favourably against the state-of-the-art CNN-based methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.