Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Recursive Training for Zero-Shot Semantic Segmentation (2103.00086v1)

Published 26 Feb 2021 in cs.CV

Abstract: General purpose semantic segmentation relies on a backbone CNN network to extract discriminative features that help classify each image pixel into a 'seen' object class (ie., the object classes available during training) or a background class. Zero-shot semantic segmentation is a challenging task that requires a computer vision model to identify image pixels belonging to an object class which it has never seen before. Equipping a general purpose semantic segmentation model to separate image pixels of 'unseen' classes from the background remains an open challenge. Some recent models have approached this problem by fine-tuning the final pixel classification layer of a semantic segmentation model for a Zero-Shot setting, but struggle to learn discriminative features due to the lack of supervision. We propose a recursive training scheme to supervise the retraining of a semantic segmentation model for a zero-shot setting using a pseudo-feature representation. To this end, we propose a Zero-Shot Maximum Mean Discrepancy (ZS-MMD) loss that weighs high confidence outputs of the pixel classification layer as a pseudo-feature representation, and feeds it back to the generator. By closing-the-loop on the generator end, we provide supervision during retraining that in turn helps the model learn a more discriminative feature representation for 'unseen' classes. We show that using our recursive training and ZS-MMD loss, our proposed model achieves state-of-the-art performance on the Pascal-VOC 2012 dataset and Pascal-Context dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.