Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 73 tok/s
Gemini 3.0 Pro 52 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Fair Multi-Exit Framework for Facial Attribute Classification (2301.02989v1)

Published 8 Jan 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Fairness has become increasingly pivotal in facial recognition. Without bias mitigation, deploying unfair AI would harm the interest of the underprivileged population. In this paper, we observe that though the higher accuracy that features from the deeper layer of a neural networks generally offer, fairness conditions deteriorate as we extract features from deeper layers. This phenomenon motivates us to extend the concept of multi-exit framework. Unlike existing works mainly focusing on accuracy, our multi-exit framework is fairness-oriented, where the internal classifiers are trained to be more accurate and fairer. During inference, any instance with high confidence from an internal classifier is allowed to exit early. Moreover, our framework can be applied to most existing fairness-aware frameworks. Experiment results show that the proposed framework can largely improve the fairness condition over the state-of-the-art in CelebA and UTK Face datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.