Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Elixir: Train a Large Language Model on a Small GPU Cluster (2212.05339v3)

Published 10 Dec 2022 in cs.DC, cs.AI, and cs.LG

Abstract: In recent years, LLMs have achieved great success due to their unprecedented size. However, training these models poses a challenge for most researchers as it requires a substantial number of GPUs. To reduce GPU memory usage, memory partitioning, and memory offloading have been proposed. These approaches eliminate memory redundancies and offload memory usage to the CPU and NVMe memory, respectively, enabling training on small GPU clusters. However, directly deploying these solutions often leads to suboptimal efficiency. Only experienced experts can unleash the full potential of hardware by carefully tuning the distributed configuration. Thus, we present a novel solution, Elixir, which automates efficient large-model training based on pre-runtime model profiling. Elixir aims to identify the optimal combination of partitioning and offloading techniques to maximize training throughput. In our experiments, Elixir significantly outperforms the current state-of-the-art baseline. Our optimal configuration achieves up to a 3.4$\times$ speedup on GPT-2 models compared with SOTA solutions. We hope that our work will benefit individuals who lack computing resources and expertise, granting them access to large models. The beta version of Elixir is now available at https://github.com/hpcaitech/ColossalAI/tree/feature/elixir.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.