Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Estimating oil and gas recovery factors via machine learning: Database-dependent accuracy and reliability (2210.12491v1)

Published 22 Oct 2022 in cs.LG

Abstract: With recent advances in artificial intelligence, ML approaches have become an attractive tool in petroleum engineering, particularly for reservoir characterizations. A key reservoir property is hydrocarbon recovery factor (RF) whose accurate estimation would provide decisive insights to drilling and production strategies. Therefore, this study aims to estimate the hydrocarbon RF for exploration from various reservoir characteristics, such as porosity, permeability, pressure, and water saturation via the ML. We applied three regression-based models including the extreme gradient boosting (XGBoost), support vector machine (SVM), and stepwise multiple linear regression (MLR) and various combinations of three databases to construct ML models and estimate the oil and/or gas RF. Using two databases and the cross-validation method, we evaluated the performance of the ML models. In each iteration 90 and 10% of the data were respectively used to train and test the models. The third independent database was then used to further assess the constructed models. For both oil and gas RFs, we found that the XGBoost model estimated the RF for the train and test datasets more accurately than the SVM and MLR models. However, the performance of all the models were unsatisfactory for the independent databases. Results demonstrated that the ML algorithms were highly dependent and sensitive to the databases based on which they were trained. Statistical tests revealed that such unsatisfactory performances were because the distributions of input features and target variables in the train datasets were significantly different from those in the independent databases (p-value < 0.05).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube