Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Prediction of Porosity and Permeability Alteration based on Machine Learning Algorithms (1902.06525v1)

Published 18 Feb 2019 in cs.LG, physics.data-an, and stat.ML

Abstract: The objective of this work is to study the applicability of various Machine Learning algorithms for prediction of some rock properties which geoscientists usually define due to special lab analysis. We demonstrate that these special properties can be predicted only basing on routine core analysis (RCA) data. To validate the approach core samples from the reservoir with soluble rock matrix components (salts) were tested within 100+ laboratory experiments. The challenge of the experiments was to characterize the rate of salts in cores and alteration of porosity and permeability after reservoir desalination due to drilling mud or water injection. For these three measured characteristics, we developed the relevant predictive models, which were based on the results of RCA and data on coring depth and top and bottom depths of productive horizons. To select the most accurate Machine Learning algorithm a comparative analysis has been performed. It was shown that different algorithms work better in different models. However, two hidden layers Neural network has demonstrated the best predictive ability and generalizability for all three rock characteristics jointly. The other algorithms, such as Support Vector Machine and Linear Regression, also worked well on the dataset, but in particular cases. Overall, the applied approach allows predicting the alteration of porosity and permeability during desalination in porous rocks and also evaluating salt concentration without direct measurements in a laboratory. This work also shows that developed approaches could be applied for prediction of other rock properties (residual brine and oil saturations, relative permeability, capillary pressure, and others), which laboratory measurements are time-consuming and expensive.

Citations (81)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube