Papers
Topics
Authors
Recent
2000 character limit reached

Code-Switching without Switching: Language Agnostic End-to-End Speech Translation (2210.01512v2)

Published 4 Oct 2022 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: We propose a) a Language Agnostic end-to-end Speech Translation model (LAST), and b) a data augmentation strategy to increase code-switching (CS) performance. With increasing globalization, multiple languages are increasingly used interchangeably during fluent speech. Such CS complicates traditional speech recognition and translation, as we must recognize which language was spoken first and then apply a language-dependent recognizer and subsequent translation component to generate the desired target language output. Such a pipeline introduces latency and errors. In this paper, we eliminate the need for that, by treating speech recognition and translation as one unified end-to-end speech translation problem. By training LAST with both input languages, we decode speech into one target language, regardless of the input language. LAST delivers comparable recognition and speech translation accuracy in monolingual usage, while reducing latency and error rate considerably when CS is observed.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.