Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

One-To-Many Multilingual End-to-end Speech Translation (1910.03320v1)

Published 8 Oct 2019 in cs.CL and eess.AS

Abstract: Nowadays, training end-to-end neural models for spoken language translation (SLT) still has to confront with extreme data scarcity conditions. The existing SLT parallel corpora are indeed orders of magnitude smaller than those available for the closely related tasks of automatic speech recognition (ASR) and machine translation (MT), which usually comprise tens of millions of instances. To cope with data paucity, in this paper we explore the effectiveness of transfer learning in end-to-end SLT by presenting a multilingual approach to the task. Multilingual solutions are widely studied in MT and usually rely on ``\textit{target forcing}'', in which multilingual parallel data are combined to train a single model by prepending to the input sequences a language token that specifies the target language. However, when tested in speech translation, our experiments show that MT-like \textit{target forcing}, used as is, is not effective in discriminating among the target languages. Thus, we propose a variant that uses target-language embeddings to shift the input representations in different portions of the space according to the language, so to better support the production of output in the desired target language. Our experiments on end-to-end SLT from English into six languages show important improvements when translating into similar languages, especially when these are supported by scarce data. Further improvements are obtained when using English ASR data as an additional language (up to $+2.5$ BLEU points).

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.