Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Local-Component-aware Graph Convolutional Network for One-shot Skeleton-based Action Recognition (2209.10073v1)

Published 21 Sep 2022 in cs.CV

Abstract: Skeleton-based action recognition receives increasing attention because the skeleton representations reduce the amount of training data by eliminating visual information irrelevant to actions. To further improve the sample efficiency, meta-learning-based one-shot learning solutions were developed for skeleton-based action recognition. These methods find the nearest neighbor according to the similarity between instance-level global average embedding. However, such measurement holds unstable representativity due to inadequate generalized learning on local invariant and noisy features, while intuitively, more fine-grained recognition usually relies on determining key local body movements. To address this limitation, we present the Adaptive Local-Component-aware Graph Convolutional Network, which replaces the comparison metric with a focused sum of similarity measurements on aligned local embedding of action-critical spatial/temporal segments. Comprehensive one-shot experiments on the public benchmark of NTU-RGB+D 120 indicate that our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.

Citations (16)

Summary

We haven't generated a summary for this paper yet.