Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Information Compensation Framework for Zero-Shot Skeleton-based Action Recognition (2406.00639v1)

Published 2 Jun 2024 in cs.CV

Abstract: Zero-shot human skeleton-based action recognition aims to construct a model that can recognize actions outside the categories seen during training. Previous research has focused on aligning sequences' visual and semantic spatial distributions. However, these methods extract semantic features simply. They ignore that proper prompt design for rich and fine-grained action cues can provide robust representation space clustering. In order to alleviate the problem of insufficient information available for skeleton sequences, we design an information compensation learning framework from an information-theoretic perspective to improve zero-shot action recognition accuracy with a multi-granularity semantic interaction mechanism. Inspired by ensemble learning, we propose a multi-level alignment (MLA) approach to compensate information for action classes. MLA aligns multi-granularity embeddings with visual embedding through a multi-head scoring mechanism to distinguish semantically similar action names and visually similar actions. Furthermore, we introduce a new loss function sampling method to obtain a tight and robust representation. Finally, these multi-granularity semantic embeddings are synthesized to form a proper decision surface for classification. Significant action recognition performance is achieved when evaluated on the challenging NTU RGB+D, NTU RGB+D 120, and PKU-MMD benchmarks and validate that multi-granularity semantic features facilitate the differentiation of action clusters with similar visual features.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.