Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Introducing Intermediate Domains for Effective Self-Training during Test-Time (2208.07736v2)

Published 16 Aug 2022 in cs.CV

Abstract: Experiencing domain shifts during test-time is nearly inevitable in practice and likely results in a severe performance degradation. To overcome this issue, test-time adaptation continues to update the initial source model during deployment. A promising direction are methods based on self-training which have been shown to be well suited for gradual domain adaptation, since reliable pseudo-labels can be provided. In this work, we address two problems that exist when applying self-training in the setting of test-time adaptation. First, adapting a model to long test sequences that contain multiple domains can lead to error accumulation. Second, naturally, not all shifts are gradual in practice. To tackle these challenges, we introduce GTTA. By creating artificial intermediate domains that divide the current domain shift into a more gradual one, effective self-training through high quality pseudo-labels can be performed. To create the intermediate domains, we propose two independent variations: mixup and light-weight style transfer. We demonstrate the effectiveness of our approach on the continual and gradual corruption benchmarks, as well as ImageNet-R. To further investigate gradual shifts in the context of urban scene segmentation, we publish a new benchmark: CarlaTTA. It enables the exploration of several non-stationary domain shifts.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.