Emergent Mind

Understanding Self-Training for Gradual Domain Adaptation

(2002.11361)
Published Feb 26, 2020 in cs.LG and stat.ML

Abstract

Machine learning systems must adapt to data distributions that evolve over time, in applications ranging from sensor networks and self-driving car perception modules to brain-machine interfaces. We consider gradual domain adaptation, where the goal is to adapt an initial classifier trained on a source domain given only unlabeled data that shifts gradually in distribution towards a target domain. We prove the first non-vacuous upper bound on the error of self-training with gradual shifts, under settings where directly adapting to the target domain can result in unbounded error. The theoretical analysis leads to algorithmic insights, highlighting that regularization and label sharpening are essential even when we have infinite data, and suggesting that self-training works particularly well for shifts with small Wasserstein-infinity distance. Leveraging the gradual shift structure leads to higher accuracies on a rotating MNIST dataset and a realistic Portraits dataset.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.