Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Region Aware Video Object Segmentation with Deep Motion Modeling (2207.10258v1)

Published 21 Jul 2022 in cs.CV

Abstract: Current semi-supervised video object segmentation (VOS) methods usually leverage the entire features of one frame to predict object masks and update memory. This introduces significant redundant computations. To reduce redundancy, we present a Region Aware Video Object Segmentation (RAVOS) approach that predicts regions of interest (ROIs) for efficient object segmentation and memory storage. RAVOS includes a fast object motion tracker to predict their ROIs in the next frame. For efficient segmentation, object features are extracted according to the ROIs, and an object decoder is designed for object-level segmentation. For efficient memory storage, we propose motion path memory to filter out redundant context by memorizing the features within the motion path of objects between two frames. Besides RAVOS, we also propose a large-scale dataset, dubbed OVOS, to benchmark the performance of VOS models under occlusions. Evaluation on DAVIS and YouTube-VOS benchmarks and our new OVOS dataset show that our method achieves state-of-the-art performance with significantly faster inference time, e.g., 86.1 J&F at 42 FPS on DAVIS and 84.4 J&F at 23 FPS on YouTube-VOS.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.