Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SpVOS: Efficient Video Object Segmentation with Triple Sparse Convolution (2310.15115v1)

Published 23 Oct 2023 in cs.CV

Abstract: Semi-supervised video object segmentation (Semi-VOS), which requires only annotating the first frame of a video to segment future frames, has received increased attention recently. Among existing pipelines, the memory-matching-based one is becoming the main research stream, as it can fully utilize the temporal sequence information to obtain high-quality segmentation results. Even though this type of method has achieved promising performance, the overall framework still suffers from heavy computation overhead, mainly caused by the per-frame dense convolution operations between high-resolution feature maps and each kernel filter. Therefore, we propose a sparse baseline of VOS named SpVOS in this work, which develops a novel triple sparse convolution to reduce the computation costs of the overall VOS framework. The designed triple gate, taking full consideration of both spatial and temporal redundancy between adjacent video frames, adaptively makes a triple decision to decide how to apply the sparse convolution on each pixel to control the computation overhead of each layer, while maintaining sufficient discrimination capability to distinguish similar objects and avoid error accumulation. A mixed sparse training strategy, coupled with a designed objective considering the sparsity constraint, is also developed to balance the VOS segmentation performance and computation costs. Experiments are conducted on two mainstream VOS datasets, including DAVIS and Youtube-VOS. Results show that, the proposed SpVOS achieves superior performance over other state-of-the-art sparse methods, and even maintains comparable performance, e.g., an 83.04% (79.29%) overall score on the DAVIS-2017 (Youtube-VOS) validation set, with the typical non-sparse VOS baseline (82.88% for DAVIS-2017 and 80.36% for Youtube-VOS) while saving up to 42% FLOPs, showing its application potential for resource-constrained scenarios.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.