Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Reduced Optimal Power Flow Using Graph Neural Network (2206.13591v1)

Published 27 Jun 2022 in eess.SY, cs.LG, and cs.SY

Abstract: OPF problems are formulated and solved for power system operations, especially for determining generation dispatch points in real-time. For large and complex power system networks with large numbers of variables and constraints, finding the optimal solution for real-time OPF in a timely manner requires a massive amount of computing power. This paper presents a new method to reduce the number of constraints in the original OPF problem using a graph neural network (GNN). GNN is an innovative machine learning model that utilizes features from nodes, edges, and network topology to maximize its performance. In this paper, we proposed a GNN model to predict which lines would be heavily loaded or congested with given load profiles and generation capacities. Only these critical lines will be monitored in an OPF problem, creating a reduced OPF (ROPF) problem. Significant saving in computing time is expected from the proposed ROPF model. A comprehensive analysis of predictions from the GNN model was also made. It is concluded that the application of GNN for ROPF is able to reduce computing time while retaining solution quality.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)