Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

N-1 Reduced Optimal Power Flow Using Augmented Hierarchical Graph Neural Network (2402.06226v1)

Published 9 Feb 2024 in eess.SY, cs.LG, and cs.SY

Abstract: Optimal power flow (OPF) is used to perform generation redispatch in power system real-time operations. N-1 OPF can ensure safe grid operations under diverse contingency scenarios. For large and intricate power networks with numerous variables and constraints, achieving an optimal solution for real-time N-1 OPF necessitates substantial computational resources. To mitigate this challenge, ML is introduced as an additional tool for predicting congested or heavily loaded lines dynamically. In this paper, an advanced ML model known as the augmented hierarchical graph neural network (AHGNN) was proposed to predict critical congested lines and create N-1 reduced OPF (N-1 ROPF). The proposed AHGNN-enabled N-1 ROPF can result in a remarkable reduction in computing time while retaining the solution quality. Several variations of GNN-based ML models are also implemented as benchmark to demonstrate effectiveness of the proposed AHGNN approach. Case studies prove the proposed AHGNN and the associated N-1 ROPF are highly effective in reducing computation time while preserving solution quality, highlighting the promising potential of ML, particularly GNN in enhancing power system operations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.