Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Gray Learning from Non-IID Data with Out-of-distribution Samples (2206.09375v2)

Published 19 Jun 2022 in cs.LG

Abstract: The integrity of training data, even when annotated by experts, is far from guaranteed, especially for non-IID datasets comprising both in- and out-of-distribution samples. In an ideal scenario, the majority of samples would be in-distribution, while samples that deviate semantically would be identified as out-of-distribution and excluded during the annotation process. However, experts may erroneously classify these out-of-distribution samples as in-distribution, assigning them labels that are inherently unreliable. This mixture of unreliable labels and varied data types makes the task of learning robust neural networks notably challenging. We observe that both in- and out-of-distribution samples can almost invariably be ruled out from belonging to certain classes, aside from those corresponding to unreliable ground-truth labels. This opens the possibility of utilizing reliable complementary labels that indicate the classes to which a sample does not belong. Guided by this insight, we introduce a novel approach, termed \textit{Gray Learning} (GL), which leverages both ground-truth and complementary labels. Crucially, GL adaptively adjusts the loss weights for these two label types based on prediction confidence levels. By grounding our approach in statistical learning theory, we derive bounds for the generalization error, demonstrating that GL achieves tight constraints even in non-IID settings. Extensive experimental evaluations reveal that our method significantly outperforms alternative approaches grounded in robust statistics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.