Out-of-distribution Detection by Cross-class Vicinity Distribution of In-distribution Data (2206.09385v2)
Abstract: Deep neural networks for image classification only learn to map in-distribution inputs to their corresponding ground truth labels in training without differentiating out-of-distribution samples from in-distribution ones. This results from the assumption that all samples are independent and identically distributed (IID) without distributional distinction. Therefore, a pretrained network learned from in-distribution samples treats out-of-distribution samples as in-distribution and makes high-confidence predictions on them in the test phase. To address this issue, we draw out-of-distribution samples from the vicinity distribution of training in-distribution samples for learning to reject the prediction on out-of-distribution inputs. A \textit{Cross-class Vicinity Distribution} is introduced by assuming that an out-of-distribution sample generated by mixing multiple in-distribution samples does not share the same classes of its constituents. We thus improve the discriminability of a pretrained network by finetuning it with out-of-distribution samples drawn from the cross-class vicinity distribution, where each out-of-distribution input corresponds to a complementary label. Experiments on various in-/out-of-distribution datasets show that the proposed method significantly outperforms the existing methods in improving the capacity of discriminating between in- and out-of-distribution samples.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.