Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

PRE-NAS: Predictor-assisted Evolutionary Neural Architecture Search (2204.12726v1)

Published 27 Apr 2022 in cs.CV

Abstract: Neural architecture search (NAS) aims to automate architecture engineering in neural networks. This often requires a high computational overhead to evaluate a number of candidate networks from the set of all possible networks in the search space during the search. Prediction of the networks' performance can alleviate this high computational overhead by mitigating the need for evaluating every candidate network. Developing such a predictor typically requires a large number of evaluated architectures which may be difficult to obtain. We address this challenge by proposing a novel evolutionary-based NAS strategy, Predictor-assisted E-NAS (PRE-NAS), which can perform well even with an extremely small number of evaluated architectures. PRE-NAS leverages new evolutionary search strategies and integrates high-fidelity weight inheritance over generations. Unlike one-shot strategies, which may suffer from bias in the evaluation due to weight sharing, offspring candidates in PRE-NAS are topologically homogeneous, which circumvents bias and leads to more accurate predictions. Extensive experiments on NAS-Bench-201 and DARTS search spaces show that PRE-NAS can outperform state-of-the-art NAS methods. With only a single GPU searching for 0.6 days, competitive architecture can be found by PRE-NAS which achieves 2.40% and 24% test error rates on CIFAR-10 and ImageNet respectively.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.