Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

NPENAS: Neural Predictor Guided Evolution for Neural Architecture Search (2003.12857v3)

Published 28 Mar 2020 in cs.LG, cs.AI, cs.CV, cs.NE, and stat.ML

Abstract: Neural architecture search (NAS) is a promising method for automatically design neural architectures. NAS adopts a search strategy to explore the predefined search space to find outstanding performance architecture with the minimum searching costs. Bayesian optimization and evolutionary algorithms are two commonly used search strategies, but they suffer from computationally expensive, challenge to implement or inefficient exploration ability. In this paper, we propose a neural predictor guided evolutionary algorithm to enhance the exploration ability of EA for NAS (NPENAS) and design two kinds of neural predictors. The first predictor is defined from Bayesian optimization and we propose a graph-based uncertainty estimation network as a surrogate model that is easy to implement and computationally efficient. The second predictor is a graph-based neural network that directly outputs the performance prediction of the input neural architecture. The NPENAS using the two neural predictors are denoted as NPENAS-BO and NPENAS-NP respectively. In addition, we introduce a new random architecture sampling method to overcome the drawbacks of the existing sampling method. Extensive experiments demonstrate the superiority of NPENAS. Quantitative results on three NAS search spaces indicate that both NPENAS-BO and NPENAS-NP outperform most existing NAS algorithms, with NPENAS-BO achieving state-of-the-art performance on NASBench-201 and NPENAS-NP on NASBench-101 and DARTS, respectively.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.