Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Long-term Video Frame Interpolation via Feature Propagation (2203.15427v1)

Published 29 Mar 2022 in cs.CV

Abstract: Video frame interpolation (VFI) works generally predict intermediate frame(s) by first estimating the motion between inputs and then warping the inputs to the target time with the estimated motion. This approach, however, is not optimal when the temporal distance between the input sequence increases as existing motion estimation modules cannot effectively handle large motions. Hence, VFI works perform well for small frame gaps and perform poorly as the frame gap increases. In this work, we propose a novel framework to address this problem. We argue that when there is a large gap between inputs, instead of estimating imprecise motion that will eventually lead to inaccurate interpolation, we can safely propagate from one side of the input up to a reliable time frame using the other input as a reference. Then, the rest of the intermediate frames can be interpolated using standard approaches as the temporal gap is now narrowed. To this end, we propose a propagation network (PNet) by extending the classic feature-level forecasting with a novel motion-to-feature approach. To be thorough, we adopt a simple interpolation model along with PNet as our full model and design a simple procedure to train the full model in an end-to-end manner. Experimental results on several benchmark datasets confirm the effectiveness of our method for long-term VFI compared to state-of-the-art approaches.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.