Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

JNMR: Joint Non-linear Motion Regression for Video Frame Interpolation (2206.04231v3)

Published 9 Jun 2022 in cs.CV

Abstract: Video frame interpolation (VFI) aims to generate predictive frames by warping learnable motions from the bidirectional historical references. Most existing works utilize spatio-temporal semantic information extractor to realize motion estimation and interpolation modeling. However, they insufficiently consider the real mechanistic rationality of generated middle motions. In this paper, we reformulate VFI as a Joint Non-linear Motion Regression (JNMR) strategy to model the complicated motions of inter-frame. Specifically, the motion trajectory between the target frame and the multiple reference frames is regressed by a temporal concatenation of multi-stage quadratic models. ConvLSTM is adopted to construct this joint distribution of complete motions in temporal dimension. Moreover, the feature learning network is designed to optimize for the joint regression modeling. A coarse-to-fine synthesis enhancement module is also conducted to learn visual dynamics at different resolutions through repetitive regression and interpolation. Experimental results on VFI show that the effectiveness and significant improvement of joint motion regression compared with the state-of-the-art methods. The code is available at https://github.com/ruhig6/JNMR.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube