Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Visualizing and Understanding Patch Interactions in Vision Transformer (2203.05922v1)

Published 11 Mar 2022 in cs.CV

Abstract: Vision Transformer (ViT) has become a leading tool in various computer vision tasks, owing to its unique self-attention mechanism that learns visual representations explicitly through cross-patch information interactions. Despite having good success, the literature seldom explores the explainability of vision transformer, and there is no clear picture of how the attention mechanism with respect to the correlation across comprehensive patches will impact the performance and what is the further potential. In this work, we propose a novel explainable visualization approach to analyze and interpret the crucial attention interactions among patches for vision transformer. Specifically, we first introduce a quantification indicator to measure the impact of patch interaction and verify such quantification on attention window design and indiscriminative patches removal. Then, we exploit the effective responsive field of each patch in ViT and devise a window-free transformer architecture accordingly. Extensive experiments on ImageNet demonstrate that the exquisitely designed quantitative method is shown able to facilitate ViT model learning, leading the top-1 accuracy by 4.28% at most. Moreover, the results on downstream fine-grained recognition tasks further validate the generalization of our proposal.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.