Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

eX-ViT: A Novel eXplainable Vision Transformer for Weakly Supervised Semantic Segmentation (2207.05358v1)

Published 12 Jul 2022 in cs.CV

Abstract: Recently vision transformer models have become prominent models for a range of vision tasks. These models, however, are usually opaque with weak feature interpretability. Moreover, there is no method currently built for an intrinsically interpretable transformer, which is able to explain its reasoning process and provide a faithful explanation. To close these crucial gaps, we propose a novel vision transformer dubbed the eXplainable Vision Transformer (eX-ViT), an intrinsically interpretable transformer model that is able to jointly discover robust interpretable features and perform the prediction. Specifically, eX-ViT is composed of the Explainable Multi-Head Attention (E-MHA) module, the Attribute-guided Explainer (AttE) module and the self-supervised attribute-guided loss. The E-MHA tailors explainable attention weights that are able to learn semantically interpretable representations from local patches in terms of model decisions with noise robustness. Meanwhile, AttE is proposed to encode discriminative attribute features for the target object through diverse attribute discovery, which constitutes faithful evidence for the model's predictions. In addition, a self-supervised attribute-guided loss is developed for our eX-ViT, which aims at learning enhanced representations through the attribute discriminability mechanism and attribute diversity mechanism, to localize diverse and discriminative attributes and generate more robust explanations. As a result, we can uncover faithful and robust interpretations with diverse attributes through the proposed eX-ViT.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.