Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking Neural Networks? (2112.12133v1)

Published 22 Dec 2021 in cs.CV

Abstract: Spiking neural networks (SNNs), that operate via binary spikes distributed over time, have emerged as a promising energy efficient ML paradigm for resource-constrained devices. However, the current state-of-the-art (SOTA) SNNs require multiple time steps for acceptable inference accuracy, increasing spiking activity and, consequently, energy consumption. SOTA training strategies for SNNs involve conversion from a non-spiking deep neural network (DNN). In this paper, we determine that SOTA conversion strategies cannot yield ultra low latency because they incorrectly assume that the DNN and SNN pre-activation values are uniformly distributed. We propose a new training algorithm that accurately captures these distributions, minimizing the error between the DNN and converted SNN. The resulting SNNs have ultra low latency and high activation sparsity, yielding significant improvements in compute efficiency. In particular, we evaluate our framework on image recognition tasks from CIFAR-10 and CIFAR-100 datasets on several VGG and ResNet architectures. We obtain top-1 accuracy of 64.19% with only 2 time steps on the CIFAR-100 dataset with ~159.2x lower compute energy compared to an iso-architecture standard DNN. Compared to other SOTA SNN models, our models perform inference 2.5-8x faster (i.e., with fewer time steps).

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.