Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimized Potential Initialization for Low-latency Spiking Neural Networks (2202.01440v1)

Published 3 Feb 2022 in cs.NE, cs.CV, and cs.LG

Abstract: Spiking Neural Networks (SNNs) have been attached great importance due to the distinctive properties of low power consumption, biological plausibility, and adversarial robustness. The most effective way to train deep SNNs is through ANN-to-SNN conversion, which have yielded the best performance in deep network structure and large-scale datasets. However, there is a trade-off between accuracy and latency. In order to achieve high precision as original ANNs, a long simulation time is needed to match the firing rate of a spiking neuron with the activation value of an analog neuron, which impedes the practical application of SNN. In this paper, we aim to achieve high-performance converted SNNs with extremely low latency (fewer than 32 time-steps). We start by theoretically analyzing ANN-to-SNN conversion and show that scaling the thresholds does play a similar role as weight normalization. Instead of introducing constraints that facilitate ANN-to-SNN conversion at the cost of model capacity, we applied a more direct way by optimizing the initial membrane potential to reduce the conversion loss in each layer. Besides, we demonstrate that optimal initialization of membrane potentials can implement expected error-free ANN-to-SNN conversion. We evaluate our algorithm on the CIFAR-10, CIFAR-100 and ImageNet datasets and achieve state-of-the-art accuracy, using fewer time-steps. For example, we reach top-1 accuracy of 93.38\% on CIFAR-10 with 16 time-steps. Moreover, our method can be applied to other ANN-SNN conversion methodologies and remarkably promote performance when the time-steps is small.

Citations (73)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube