Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AI and extreme scale computing to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non-precessing binary black hole mergers (2112.07669v2)

Published 13 Dec 2021 in astro-ph.IM, cs.AI, and gr-qc

Abstract: We use AI to learn and infer the physics of higher order gravitational wave modes of quasi-circular, spinning, non precessing binary black hole mergers. We trained AI models using 14 million waveforms, produced with the surrogate model NRHybSur3dq8, that include modes up to $\ell \leq 4$ and $(5,5)$, except for $(4,0)$ and $(4,1)$, that describe binaries with mass-ratios $q\leq8$, individual spins $sz_{{1,2}}\in[-0.8, 0.8]$, and inclination angle $\theta\in[0,\pi]$.Our probabilistic AI surrogates can accurately constrain the mass-ratio, individual spins, effective spin, and inclination angle of numerical relativity waveforms that describe such signal manifold. We compared the predictions of our AI models with Gaussian process regression, random forest, k-nearest neighbors, and linear regression, and with traditional Bayesian inference methods through the PyCBC Inference toolkit, finding that AI outperforms all these approaches in terms of accuracy, and are between three to four orders of magnitude faster than traditional Bayesian inference methods. Our AI surrogates were trained within 3.4 hours using distributed training on 1,536 NVIDIA V100 GPUs in the Summit supercomputer.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube