Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Interpretable AI forecasting for numerical relativity waveforms of quasi-circular, spinning, non-precessing binary black hole mergers (2110.06968v2)

Published 13 Oct 2021 in gr-qc, astro-ph.IM, and cs.AI

Abstract: We present a deep-learning artificial intelligence model that is capable of learning and forecasting the late-inspiral, merger and ringdown of numerical relativity waveforms that describe quasi-circular, spinning, non-precessing binary black hole mergers. We used the NRHybSur3dq8 surrogate model to produce train, validation and test sets of $\ell=|m|=2$ waveforms that cover the parameter space of binary black hole mergers with mass-ratios $q\leq8$ and individual spins $|sz_{{1,2}}| \leq 0.8$. These waveforms cover the time range $t\in[-5000\textrm{M}, 130\textrm{M}]$, where $t=0M$ marks the merger event, defined as the maximum value of the waveform amplitude. We harnessed the ThetaGPU supercomputer at the Argonne Leadership Computing Facility to train our AI model using a training set of 1.5 million waveforms. We used 16 NVIDIA DGX A100 nodes, each consisting of 8 NVIDIA A100 Tensor Core GPUs and 2 AMD Rome CPUs, to fully train our model within 3.5 hours. Our findings show that artificial intelligence can accurately forecast the dynamical evolution of numerical relativity waveforms in the time range $t\in[-100\textrm{M}, 130\textrm{M}]$. Sampling a test set of 190,000 waveforms, we find that the average overlap between target and predicted waveforms is $\gtrsim99\%$ over the entire parameter space under consideration. We also combined scientific visualization and accelerated computing to identify what components of our model take in knowledge from the early and late-time waveform evolution to accurately forecast the latter part of numerical relativity waveforms. This work aims to accelerate the creation of scalable, computationally efficient and interpretable artificial intelligence models for gravitational wave astrophysics.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube