Papers
Topics
Authors
Recent
2000 character limit reached

Contrastive Cross-domain Recommendation in Matching (2112.00999v2)

Published 2 Dec 2021 in cs.IR

Abstract: Cross-domain recommendation (CDR) aims to provide better recommendation results in the target domain with the help of the source domain, which is widely used and explored in real-world systems. However, CDR in the matching (i.e., candidate generation) module struggles with the data sparsity and popularity bias issues in both representation learning and knowledge transfer. In this work, we propose a novel Contrastive Cross-Domain Recommendation (CCDR) framework for CDR in matching. Specifically, we build a huge diversified preference network to capture multiple information reflecting user diverse interests, and design an intra-domain contrastive learning (intra-CL) and three inter-domain contrastive learning (inter-CL) tasks for better representation learning and knowledge transfer. The intra-CL enables more effective and balanced training inside the target domain via a graph augmentation, while the inter-CL builds different types of cross-domain interactions from user, taxonomy, and neighbor aspects. In experiments, CCDR achieves significant improvements on both offline and online evaluations in a real-world system. Currently, we have deployed our CCDR on WeChat Top Stories, affecting plenty of users. The source code is in https://github.com/lqfarmer/CCDR.

Citations (75)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.